Crystal Structure of Spirodienone II

By H. Koyama * and T. Irie, Shionogi Research Laboratory, Shionogi and Co., Ltd., Fukushima-ku, Osaka, Japan

The crystal structure of the title compound has been determined by a three-dimensional X-ray analysis. The crystals are orthorhombic, with $a=9.781 \pm 0.003, b=9.923 \pm 0.003, c=9.428 \pm 0.003 \AA$, and $Z=4$, in space group $P 2_{1} 2_{1} 2_{1}$. The structure was solved from diffractometer data by the phase-addition and tangent refinement procedures and refined by full-matrix least-squares calculations to a final R of 0.055 for 878 independent observed reflections. The molecule consists of a cyclodienone ring and a cyclohexane ring. joined through a spirocarbon atom: it contains an almost perfect mirror plane. The mean of the angles around the spiro-carbon atom is ca. $109 \cdot 4^{\circ}$.

Spirodienone II ${ }^{\mathbf{1}}$ has three possible conformations (I)-(III). In order to obtain detailed information on the molecular conformation and the configuration around the spiro-carbon atom, we have determined the structure of spirodienone II by means of a single-crystal X-ray analysis and shown it to correspond to (III).

(III)

EXPERIMENTAL

Samples were prepared by the method of ref. 1, and recrystallized from n-hexane as colourless prisms (m.p. $83 \cdot 5-84 \cdot 5^{\circ}$).

Crystal Data.- $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}, M=162 \cdot 2$. Orthorhombic, $a=$ $9.781 \pm 0.003, \quad b=9.923 \pm 0.003, \quad c=9.428 \pm 0.003 \AA$, $U=915 \AA^{3}, D_{\mathrm{m}}=\mathrm{I} \cdot 165$ (by flotation), $Z=4, D_{\mathrm{c}}=\mathrm{I} \cdot 177$, $F(000)=352$. Space group $P 2_{1} 2_{1} 2_{1}\left(D_{2}^{4}\right)$ from systematic absences: $h 00$ when h is odd, $0 k 0$ when k is odd, $00 l$ when l is odd. Mo- K_{α} radiation, $\lambda=0.7107 \AA ; \mu\left(\mathrm{Mo}-K_{\alpha}\right)=$ $0.785 \mathrm{~cm}^{-1}$.

Precession and Weissenberg photographs were taken with $\mathrm{Cu}-K_{\alpha}$ radiation; the unit-cell dimensions were determined from the precession photographs and refined from the diffractometer data.
The three-dimensional intensity data were collected on a Hilger and Watts automatic four-circle diffractometer Y 290 controlled by a PDP 8 computer. Integrated intensities were measured for $\theta<27 \cdot 5^{\circ}$ by the $\theta-2 \theta$ scan technique with Mo- K_{α} radiation and a scintillation counter (with a Zirconium filter and pulse-height analyser). Each reflection was integrated in 80 steps of intervals of 0.01°. In this way 1231 independent reflections were recorded, of which 978 had counts more than one standard deviation of the total counts, after the two background readings had been subtracted. All the intensities were corrected for Lorentz and polarization factors, and the normalized structure factors $|E|$ as well as structure amplitudes $|F|$ were derived. No absorption corrections were applied

[^0]since the specimen was considered to be sufficiently small $(0.23 \times 0.26 \times 0.28 \mathrm{~mm}$.).

Structure Analysis.-The structure was solved by the phase-addition procedure ${ }^{2}$ for noncentrosymmetric space groups followed by tangent refinement. The normalized structure-factor magnitudes $|E|$ and the Σ_{2} relationships were calculated with the use of a programme of Okada, ${ }^{3}$ and 392 reflections with $|E|>\mathrm{I} \cdot 00$ were used in subsequent calculations. Initially only terms with $\left|E_{h}\right|>1.5$ were used in the Σ_{2}-relationship. The origin and enantiomorph were defined by arbitrary choices of phase for the following reflections:
\(\left.$$
\begin{array}{ccc} & E & \\
\begin{array}{cc}1,2,0 & 3 \cdot 87 \\
0,7,10 & \mathbf{2 . 8 6}\end{array}
$$ \& \phi=-\pi / 2

\mathbf{2 , 0 , 1} \& \mathbf{2 . 4 9} \& -\pi / 2

\mathbf{5 , 0 , 8} \& \mathbf{2 . 4 4} \& -\pi / 2\end{array}\right\}\)| ϕ |
| :---: |
| Fixes origin |
| Fixes enantiomorph |

The 4,1,0 reflection ($E 2 \cdot 27$) was added to this list with its two possible phases of $0, \pi$ and the sets were extended by the use of the equation: ${ }^{2} \phi_{h_{+k}} \approx \phi_{h}+\phi_{k}$, only those phases being accepted whose variance did not exceed 0.5 radians. This yielded two sets of 76 phases which were extended and refined with the formula ${ }^{2} \tan \phi_{h} \approx \Sigma\left|E_{h-k}\right|\left|E_{k}\right| \sin \left(\phi_{h-k}+\right.$ $\left.\phi_{k}\right) / \Sigma\left|E_{h-k}\right|\left|E_{k}\right| \cos \left(\phi_{h-k}+\phi_{k}\right)$ by means of a computer program written by Okada. ${ }^{3}$ The set with $\phi_{4.0,1}=\pi$ gave 322 phases and led smoothly to an E map containing twelve distinctively strong peaks per asymmetric unit (peak heights ranging from 628-212, the next highest being 110), and they were readily shown to represent the whole molecule. The other option for $\phi_{4,1,0}$ gave a map containing nothing meaningful and its few strong peaks would not refine. The approximate co-ordinates of the molecule were refined isotropically by two cycles of fullmatrix least squares to $R 0.140$, and anisotropically to $R 0 \cdot 104$ using a CDC 3600 computer with the programme of Busing and Levy. ${ }^{4}$ At this stage a difference-Fourier synthesis was calculated from which the positions of the 14 hydrogen atoms were found (Figure 1). Inclusion of the hydrogen atoms with constant temperature factor $B=$ $2 \cdot 0 \AA^{2}$ in subsequent cycles of least-squares refinement reduced R to 0.055 for the 878 reflections whose intensities were less than twice the standard deviation of the total counts; the remainder were rejected. In this refinement an equal weight was applied to the 878 structure factors. No more appropriate weighting scheme could be found from an analysis of the ΔF values.
Observed and calculated structure amplitudes are listed in Supplementary Publication No. SUP 20273 (3 pp., I

[^1]microfiche).* The atomic scattering factors used in all calculations were taken from ref. 5. A final threedimensional difference Fourier map over one molecule of spirodienone II is shown in Figure 1. The positional and thermal parameters for the final structure are given in

Tables 1 and 2. Bond distances and valency angles are given in Table 3, together with their standard deviations computed from the least-squares residuals. The molecular packing arrangement seen along the c axis is illustrated in Figure 2. All intermolecular distances were calculated,

Table 1
Final fractional atomic co-ordinates and anisotropic thermal parameters,* with estimated standard deviations in parentheses

Atom	x	y	z	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
O	0.3341 (4)	0-1236(4)	1.0328(3)	$0.0217(6)$	0.0216(6)	0.0161 (4)	$-0.0031(5)$	$0.0085(5)$	-0.0016(5)
C(1)	$0 \cdot 3923$ (5)	$0 \cdot 1318(4)$	$0.9184(5)$	$0.0150(6)$	$0 \cdot 0106(4)$	$0.0153(6)$	$0.0004(5)$	$0.0034(6)$	-0.0007(5)
$\mathrm{C}(2)$	$0 \cdot 3299$ (4)	0.0819 (4)	$0 \cdot 7872$ (5)	0.0113 (5)	0.0121 (5)	$0.0165(6)$	-0.0017(4)	$0.0022(5)$	$0 \cdot 0016(5)$
$\mathrm{C}(3)$	$0 \cdot 3924(4)$	$0.0898(4)$	$0 \cdot 6642$ (5)	0.0097 (5)	$0.0125(5)$	$0.0139(6)$	-0.0009(4)	-0.0016(4)	$0 \cdot 0011(4)$
C(4)	$0.5327(4)$	0.1492(4)	$0.6430(4)$	$0.0104(4)$	$0.0106(4)$	$0.0100(4)$	$-0.0008(4)$	$0 \cdot 0000(4)$	$0.0007(4)$
C(5)	$0.5930(4)$	$0 \cdot 1979$ (4)	$0 \cdot 7805(4)$	$0.0114(5)$	$0.0111(4)$	$0.0123(5)$	-0.0012(4)	$-0.0009(5)$	$-0.0001(4)$
$\mathrm{C}(6)$	0.5315 (5)	$0 \cdot 1892$ (4)	$0.9047(4)$	$0.0137(5)$	$0 \cdot 0108(4)$	$0.0119(5)$	$0.0000(4)$	-0.0002(5)	-0.0011(4)
$\mathrm{C}(7)$	0.5265 (5)	$0 \cdot 2695$ (4)	0.5387 (4)	$0.0138(6)$	$0.0099(5)$	$0.0138(6)$	$0 \cdot 0001$ (4)	$0.0016(5)$	$0 \cdot 0020$ (4)
$\mathrm{C}(8)$	0.4915 (5)	0.2271 (5)	$0.3871(5)$	$0.0173(7)$	$0.0139(6)$	$0.0126(6)$	0.0003(6)	$-0.0010(6)$	$0.0036(5)$
$\mathrm{C}(9)$	0.5886(6)	$0 \cdot 1207(5)$	$0 \cdot 3324$ (5)	$0.0180(8)$	0.0179(7)	$0.0111(5)$	$-0.0014(7)$	$0.0004(6)$	$-0.0011(5)$
$\mathrm{C}(10)$	$0 \cdot 5920$ (5)	$-0.0003(5)$	$0 \cdot 4293$ (5)	$0.0158(6)$	$0.0133(5)$	$0.0134(6)$	0.0020 (5)	$0.0008(5)$	$-0.0022(5)$
C(11)	0.6306(4)	$0.0411(4)$	0.5805(5)	$0.0120(5)$	$0.0115(5)$	$0.0133(6)$	0.0014(4)	-0.0005(5)	0.0006(4)
* In the form: $T=\exp \left\{-\left(\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33} l^{2}+2 \beta_{12} h k+2 \beta_{13} h l+2 \beta_{23} k l\right)\right\}$.									

Figure 1 The difference electron-density map showing the hydrogen atoms. Contours are drawn on an arbitrary scale

Table 2
Final fractional hydrogen atom co-ordinates with their standard deviations in parentheses, and isotropic temperature factors

Atom	x	y	z	B
$\mathrm{H}(2)$	0.236(4)	0.041(3)	0.801(4)	2.000
$\mathrm{H}(3)$	$0 \cdot 349$ (4)	$0 \cdot 051$ (4)	0.579(4)	$2 \cdot 000$
$\mathrm{H}(5)$	$0 \cdot 691$ (3)	$0 \cdot 252(3)$	0.775 (4)	2.000
$\mathrm{H}(6)$	$0 \cdot 583(3)$	$0 \cdot 228$ (3)	0.991 (4)	2.000
$\mathrm{H}(7 \mathrm{a})$	$0 \cdot 460$ (4)	$0 \cdot 335(4)$	0.575 (4)	2.000
$\mathrm{H}(7 \mathrm{~b})$	$0 \cdot 632(4)$	$0 \cdot 320$ (3)	$0 \cdot 534(4)$	$2 \cdot 000$
$\mathrm{H}(8 \mathrm{a})$	$0 \cdot 379$ (4)	$0 \cdot 200$ (3)	$0 \cdot 385$ (4)	2.000
$\mathrm{H}(8 \mathrm{~b})$	$0 \cdot 487$ (4)	$0 \cdot 317$ (3)	0.327 (3)	2.000
$\mathrm{H}(9 \mathrm{a})$	$0 \cdot 572(4)$	$0 \cdot 097(4)$	$0 \cdot 245$ (4)	$2 \cdot 000$
H(9b)	$0 \cdot 693$ (4)	$0 \cdot 161$ (4)	$0 \cdot 330$ (4)	$2 \cdot 000$
$\mathrm{H}(10 \mathrm{a})$	$0 \cdot 479$ (4)	-0.053(3)	$0 \cdot 433$ (4)	2.000
$\mathrm{H}(10 \mathrm{~b})$	$0 \cdot 650$ (4)	-0.073(3)	0.396 (4)	2.000
H(1la)	$0 \cdot 735(4)$	0.075 (3)	$0 \cdot 580$ (4)	2.000
H(11b)	$0 \cdot 637(4)$	-0.035(4)	0.643(4)	2.000

Table 3
Interatomic distances (\AA) and angles $\left(^{\circ}\right.$), with standard deviations in parentheses
(a) Bond distances

$\mathrm{O}-\mathrm{C}(1)$	$1.222(6)$	$\mathrm{C}(4)-\mathrm{C}(11)$	$1 \cdot 554(6)$
$\mathrm{C}(1)-\mathrm{C}(2)$	1-465(7)	$\mathrm{C}(5)-\mathrm{C}(6)$	$1 \cdot 319(6)$
$\mathrm{C}(1)-\mathrm{C}(6)$	1.481 (7)	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.528(6)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1 \cdot 313$ (6)	$\mathrm{C}(8)-\mathrm{C}(9)$	1.511(7)
$\mathrm{C}(3)-\mathrm{C}(4)$	1-506(6)	$\mathrm{C}(9)-\mathrm{C}(10)$	1-509(7)
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.503(6)$	$\mathrm{C}(10)-\mathrm{C}(11)$	1.531(7)
$\mathrm{C}(4)-\mathrm{C}(7)$	$1 \cdot 547$ (5)		
(b) Valency angles			
$\mathrm{O}-\mathrm{C}(1)-\mathrm{C}(2)$	121.8(4)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(11)$	107.9(3)
$\mathrm{O}-\mathrm{C}(1)-\mathrm{C}(6)$	122.0(4)	$\mathrm{C}(7)-\mathrm{C}(4)-\mathrm{C}(11)$	108.3(3)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	116.0(4)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	124.4(4)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	122.0(4)	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	121.4(4)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	124.3(4)	$\mathrm{C}(4)-\mathrm{C}(7)-\mathrm{C}(8)$	113.0(3)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	111.6(3)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	111.7(4)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(7)$	$110 \cdot 5(3)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	111.2(4)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(11)$	109.9(3)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	110.7(4)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(7)$	108.3(3)	$\mathrm{C}(4)-\mathrm{C}(11)-\mathrm{C}(10)$	112.7(3)

(c) Dihedral angles

$\mathrm{C}(2)-\mathrm{C}(3) \rightarrow \mathrm{C}(4)-\mathrm{C}(7)$	$-120 \cdot 3$
$\mathrm{C}(2)-\mathrm{C}(3) \rightarrow \mathrm{C}(4)-\mathrm{C}(11)$	$119 \cdot 9$
$\mathrm{C}(6)-\mathrm{C}(5) \rightarrow \mathrm{C}(4)-\mathrm{C}(7)$	$122 \cdot 3$
$\mathrm{C}(6)-\mathrm{C}(5) \rightarrow \mathrm{C}(4)-\mathrm{C}(11)$	$-120 \cdot 5$
$\mathrm{C}(5)-\mathrm{C}(4) \rightarrow \mathrm{C}(7)-\mathrm{C}(8)$	$169 \cdot 4$
$\mathrm{C}(5)-\mathrm{C}(4) \rightarrow \mathrm{C}(11)-\mathrm{C}(10)$	$-170 \cdot 9$
$\mathrm{C}(3)-\mathrm{C}(4) \rightarrow \mathrm{C}(7)-\mathrm{C}(8)$	$-67 \cdot 9$
$\mathrm{C}(3)-\mathrm{C}(4) \rightarrow \mathrm{C}(11)-\mathrm{C}(10)$	$67 \cdot 0$
$\mathrm{C}(4)-\mathrm{C}(7) \rightarrow \mathrm{C}(8)-\mathrm{C}(9)$	$-54 \cdot 9$
$\mathrm{C}(4)-\mathrm{C}(11) \rightarrow \mathrm{C}(10)-\mathrm{C}(9)$	$56 \cdot 9$
$\mathrm{C}(7)-\mathrm{C}(8) \rightarrow \mathrm{C}(9)-\mathrm{C}(10)$	$55 \cdot 7$
$\mathrm{C}(11)-\mathrm{C}(10) \rightarrow \mathrm{C}(9)-\mathrm{C}(8)$	$-56 \cdot 5$

(d) $\mathrm{C}-\mathrm{H}$ bond distances

$\mathrm{C}(2)-\mathrm{H}(2)$	$1.00(4)$	$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~b})$	$1.05(3)$
$\mathrm{C}(3)-\mathrm{H}(3)$	$0.97(4)$	$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{a})$	$0.86(4)$
$\mathrm{C}(5)-\mathrm{H}(5)$	$1.10(3)$	$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~b})$	$1.10(4)$
$\mathrm{C}(6)-\mathrm{H}(6)$	$1.03(4)$	$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{a})$	$1.21(4)$
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{a})$	$0.97(4)$	$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~b})$	$0.97(3)$
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~b})$	$1.15(4)$	$\mathrm{C}(11)-\mathrm{H}(1 \mathrm{a})$	$1.08(4)$
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{a})$	$1.12(4)$	$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~b})$	$0.97(4)$

* For details of Supplementary Publications see Notice to Authors No. 7 in J. Chem. Soc. (A), 1970, Issue No. 20 (items less than 10 pp . will be supplied as full size copies).

5 ' International Tables for X-Ray Crystallography,' vol. 3, Kynoch Press, Birmingham, 1962, pp. 201-207.
and the most significant contacts ($\leqslant \mathbf{3} \cdot 60 \AA$) are given in Table 4. The mean estimated standard deviations are about $0.006 \AA$ for bond distances and about $0 \cdot 4^{\circ}$ for angles.

Figure 2 The view of the structure looking down c

DISCUSSION

The configuration of the molecule is illustrated ${ }^{6}$ in Figure 3 where each atom is represented as an ellipsoid in conformity with the thermal parameters listed in

Table 4
Intermolecular distances $(<3 \cdot 60 \AA$)

$\mathrm{O} \cdots \mathrm{C}\left(2^{\mathrm{I}}\right)$	$\mathbf{3 . 5 3 4}$	$\mathrm{O} \cdots \mathrm{C}\left(5^{\mathrm{II}}\right)$	$\mathbf{3 . 4 3 3}$
$\mathrm{O} \cdots \mathrm{C}\left(3^{\mathrm{I}}\right)$	$\mathbf{3 . 3 0 6}$	$\mathrm{O} \cdots \mathrm{C}\left(\mathbf{6}^{\mathrm{II}}\right)$	$\mathbf{3 . 5 4 2}$

The Roman numerals as superscripts refer to the equivalent positions relative to the reference molecule at x, y, z :

$$
\text { I } \frac{1}{2}-x,-y, \frac{1}{2}+z \quad \text { II }-\frac{1}{2}+x, \frac{1}{2}-y, 2-z
$$

Tables 1 and 2. The molecule consists of the cyclodienone ring and the cyclohexane ring, which are joined through a spiro-carbon atom. The planarity of the cyclodienone ring has been confirmed by calculating the least-squares plane through the atoms $\mathrm{O}, \mathrm{C}(1)$-(6) and the displacements of atoms from this plane are shown in Table 5. The cyclohexane ring has the normal chair conformation, and the groups of atoms $C(3), C(4), C(5)$, $C(7)$, and $C(11)$ is tetrahedral. The mean of the angles around the spiro-carbon atom $\mathrm{C}(4)$ is $c a .109 \cdot 4^{\circ} .^{7}$ The values for the $\mathrm{C}=\mathrm{C}$ and $\mathrm{C}=\mathrm{O}$ bond distances $(1 \cdot 313,1 \cdot 319$, and $1 \cdot 222 \AA$) in the cyclodienone ring are quite normal,

[^2]but all the angles suggested the presence of considerable strain in the ring. The mean angle in the cyclohexane ring is $c a .111 \cdot 3^{\circ} .^{8}$ The mean $\mathrm{C}-\mathrm{C}$ bond ($1.530 \AA$) in the cyclohexane ring is also considered normal, but the two mean $\mathrm{C}-\mathrm{C}$ distances in the cyclodienone ring are considerably different from each other, 1.473 and $1 \cdot 540 \AA$. The $\mathrm{C}_{s p^{2}}{ }^{-} \mathrm{C}_{s p^{2}}$ single-bond distance of $1.473 \AA$ is typical for conjugation. The values of $1.540 \AA$ for $\mathrm{C}_{s p^{2}}-\mathrm{C}_{s p^{3}}$ bonds is more strange and this may be due to spiro-carbon atom strains. The shortest contact is $3 \cdot 306 \AA$ between O and $\mathrm{C}\left(3^{\mathrm{I}}\right)$ in the neighbouring molecule; other intermolecular contacts ($\leqslant 3 \cdot 60 \AA$) are given in Table 4.

Figure 3 A diagram of the spirodienone II molecule
Table 5
Equations of best least-squares planes* and, in square brackets, displacements of the atoms (\AA) from these planes \dagger

Plane (a): $\mathrm{O}, \mathrm{C}(1)-(6) \quad-0.4045 X+0.9017 Y-0.1523 Z=$
[C(7) 1.25, C(11) -1.26]
Plane (b): $C(7), C(8), \quad 0.8854 X+0.3355 Y-0.3215 Z=$ $\mathrm{C}(10), \mathrm{C}(11) \quad 3.8319$
$[\mathrm{C}(4)-0.67, \mathrm{C}(9) 0.66]$

* X, Y, and Z are orthogonal co-ordinates in \AA. \dagger The atoms defining the planes were all $0.00 \AA$ from them.

All other approaches correspond to normal van der Waals interactions.
We thank Prof. Dr. A. Dreiding of the Department of Chemistry, University of Zürich, for suggesting this investigation, Drs. H. Tanida and T. Tsuji for preparation of suitable crystals, Dr. I. L. Karle for computational assistance and programmes for the tangent formula, and Miss K. Oda and H . Nakai for technical assistance.
[0/1210 Received, 15th July, 1970]
${ }^{8}$ J. B. Lambert, R. E. Carhart, P. W. R. Corfield, and J. H. Enemark, Chem. Comm., 1968, 999.

[^0]: ${ }^{1}$ A. S. Dreiding, Helv. Chim. Acta, 1957, 40, 1812.
 ${ }_{2} \mathrm{~J}$. Karle and I. L. Karle, Acta Cryst., 1966, 21, 849.
 ${ }^{3} \mathrm{~K}$. Okada, personal communication.

[^1]: 4 W. L. Busing, K. O. Martin, and H. A. Levy, 1962, ORFLS, A Fortran Crystallographic Least-squares Program, Oak Ridge National Laboratory, Tennessee.

[^2]: ${ }^{6}$ C. K. Johnson, 1965, ORTEP, A Fortran Thermal-ellipsoid Plot Program, Oak Ridge National Laboratory, Tennessee.
 ${ }^{7}$ O. Ermer and J. D. Dunitz, Helv. Chim. Acta, 1969, 52, 1861.

